Ths is St Martin's C of E Primary School Calculation Policy for multiplication and division which is supplemented with the Whiterose Calculation Policy. At St Martin's we believe that children should have a secure understanding of multiplication and division, being able to use a number of mental and visual strategies before moving onto formal methods.

Below are a number of images and representations that we use within our teaching to support children with their understanding of maths - taken from the Whiterose Calculation Policy.

Base 10/Dienes (multiplication)
Base 10/Dienes (division)

Place Value Counters (multiplication)

Place Value Counters (division)

St Martin's Primary Progression in Multiplication and Division

St Martin's Primary Progression in Multiplication and Division

Skill	Year	Representations and models	
Divide 4-digits by 1- digit (grouping)	5	Place value counters Counters	Place value grid Written short division
Divide multi-digits by 2-digits (short division)	6	Written short division	List of multiples
Divide multi-digits by 2-digits (long division)	6	Written long division	List of multiples

It is important to check the year group on either side of your year group as some include mixed expectations. For example, in Year 3 there is year $2 / 3$ expectations. As a teacher you need to decide if your children are ready to cover these areas.

Multiplication

Division
Through Number Talk children should be consolidating and securing their mental methods of calculating allowing them to manipulate numbers to solve calculations in a variety of ways, and through this develop greater pace by choosing the most efficient method.
Children need to be clear that a compact written method is not always the best method, and common errors need to be highlighted when teaching.
Number Talks should allow children to develop fluency, making links to their timetables knowledge. For example in KS2 children should be making links such as: Lower KS2 -

- To multiply by 5 , they can $\times 10$ and half
- To multiply by 20 , they can $\times 10$ and double or double and then $\times 10$
- To multiply by 4 , they can double and double again
- To multiply by 8 , they can double, double and double again

Higher KS2

- To multiply by 6 , they can $\times 2$ then $\times 3$ or $\times 3$ then $\times 2$
- Dividing by 5 , divide by 10 and double
- Dividing by 20, divide by 10 and half

It is important to note that when picking example calculations to teach the children, the numbers that you choose match the method that you are teaching.

St Martin's Primary Progression in Multiplication and Division

R

St Martin's Primary Progression in Multiplication and Division
(s)
(gill: Solve 1-step problems using division (grouping)
为

Children continue to count in steps of 2,5 and 10

Sharing

Begin to find half or a quarter of a quantity using sharing, e.g. $1 / 4$ of 16 cubes by sorting the subes into four piles.
Find $1 / 4,1 / 2,3 / 4$ of small quantities.

(Cuisenaire is a useful image to support the bar model) Find half of numbers up to 40 , including realising that half of an odd number gives a remainder of 1 or an answer containing a $1 / 2$.
Begin to know half of multiples of 10 to 100, e.g. half of 70 is 35 .

Counting supports repeated addition
4 times 6 is $6+6+6+6=24$ or 4 lots of 6 or 6×4 Children will use number lines or bead bars to support their understanding.

Children will understand how an array replicates repeated addition within the image also how it supports understanding of the inverse

Find doubles to double 50 using partitioning. Use doubling as a strategy in multiplying by 2 . e.g. 18×2 is double 18 (36).

Partitioning

$$
\begin{aligned}
18 \times 5= & (10 \times 5)+(8 \times 5) \\
& =50+40 \\
& =90
\end{aligned}
$$

Using known Facts

$$
20 \times 3=2 \times 3 \times 10=20 \times 2+20
$$

Developing written methods using understanding of | visual images | 10 | 8 |
| :--- | :--- | :--- |

$\circ \circ \circ$
$3 \circ \circ \circ \circ 30^{\circ} \circ \circ \circ \circ \cdot \circ \circ \cdot 24 \circ \circ \circ$

Develop onto the grid method				
	10	$	$	8
:---				
3				

Division
The emphasis in Y 3 is on grouping rather than sharing. Counting remains an important element.
Using an empty number line to count forwards...
$24 \div 3=8$
'How many threes are in 24?'

mmmen

$=\square$

Children will see that arrays represent groups within the rows and the column. They can also begin to use the array as an image to find fractions of the total array and to understand inverse relationships

Grouplng

Recognise that division is not commutative, e.g. $16 \div 8$ does not equal $8 \div 16$. Relate division to multiplications 'with holes in', e.g. $\square \times 5=30$ is the same calculation as $30 \div 5=$? thus we can count in in 5 s to find the answer. Divide multiples of 10 by single-digit numbers, e.g. $240 \div 8=30$.

Using number facts

Know halves of even numbers to 40.

Halving by partitioning

The bead bar shows multiplying and dividing by 5 very clearly

COMMUTATIVITY remains an important piece of understanding - that the

Answe is the same witheither representation however they need to knowh

Each calculation is different
y4
Eg - you can have 5 horses with 4 legs each, but you cant have 4 horses with
5 legs each!!

Partitioning

$38 \times 5=(30 \times 5)+(8 \times 5)$
$=150+40$
$=190$

Using known Facts

$38 \times 5=(38 \times 10)$ divided by 2

Grid method

The arrays provide a good image for understanding the grid method
7×8 exemplification
7×8 exemplification
00000000
00000000
00000000
00000008
00000000
0000000
0000000

2 digit $\times 1$ digit

Make the link between grid method and a vertical method (ladder method).

$$
\begin{array}{c|c|c|c}
\mathrm{x} & 200 & 50 & 3 \\
\hline 6 & 1200 & 300 & 18
\end{array}=1518
$$

$$
\begin{array}{r}
253 \\
\times \quad 6 \\
\hline 1200 \\
300 \\
\hline 18 \\
\hline 1518
\end{array}
$$

Halving

Begin to half amounts of money, e.g. $£ 9$ halved is $£ 4.50$.
Use halving as a strategy in dividing by 2,4 and 8 , e.g. $164 \div 4$ is half of 164 (82) halved again (41).

Grouping

Use multiples of 10 times the divisor to divide by numbers <9 above the tables facts, e.g. $45 \div 3$.

Divide multiples of 100 by single-digit numbers using division facts, e.g. $3200 \div 8=4000$.

When dividing using the bead bar it can help to separate groups using pegs.
This is important as the bead bar provides a link to the number line, which can be used as a jotting for both multiplication and division. E.g. $35 \div 7$

Using number facts

Know times tables up to 12×12 and all related division facts.
Use division facts to find unit and non-unit fractions of amounts within the times tables, e.g. $7 / 8$ of 56 is $7 \times(56 \div 8)$.

November 2020

Grid method

2 digit $\times 2$ digit exemplification

Skill: Divide 4-digits by 1-digit (grouping)

Division by Grouping - 100 divided by 7
Children need to develop a Toolbox of Facts that will help them to solve the calculations.

100/7....what do I know? Look in toolbox - how can I use these facts to help me?

St Martin's Primary Progression in Multiplication and Division

Using the Toolbox with increased multiples

$432 \div 5=$		$\begin{aligned} & \text { I know } 5 \times 80=400 ; \\ & 5 \times 5= 25 ; \\ & 5 \times 2= 10 \\ & 5 \times 1= 5 \end{aligned}$
	5×80	5x5

There are $865 s$ in 432 with a remainder of 2; the answer is 86 r 2 The remainder will initially be expressed as a number, then as a fraction and finally as a decimal (Year 6)

St Martin's Primary Progression in Multiplication and Division

Times Tables

St Martin's Primary Progression in Multiplication and Division

Years 2-4

Year: 2
Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square.

Look for patterns in the two times table, using concrete manipulatives to support. Notice how all the numbers are even and there is a pattern in the ones. Use different models to develop fluency.

Skill: 10 times table

1	2	3	4	5	6	7	8	9	0
11	12	13	14	15	16	18	18	19	
	2								

 \begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline 51 \& 52 \& 53 \& 54 \& 55 \& 56 \& 57 \& 58 \& 59

\hline 61 \& 62 \& 63 \& 64 \& 65 \& 66 \& 67 \& 68 \& 69

\hline

\hline 61 \& 62 \& 63 \& 64 \& 65 \& 66 \& 67 \& 68

\hline 7 \& 69 \& 0

\hline 71 \& 72 \& 73 \& 74 \& 75 \& 76 \& 7 \& 78

\hline

\hline 71 \& 72 \& 73 \& 74 \& 75 \& 76 \& 77 \& 78 \& 79

\hline 81 \& 82 \& 83 \& 84 \& 85 \& 86 \& 87 \& 88 \& 89

\hline 8 \& 82 \& 83 \& \& \& 5 \& 5 \& 8 \&

\hline

\hline 81 \& 82 \& 83 \& 84 \& 85 \& 86 \& 87 \& 88 \& 89 \& \circledast

\hline 91 \& 92 \& 93 \& 94 \& 95 \& 96 \& 97 \& \& \& \& 9 \&

\hline
\end{tabular}

Year: 2

Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square.

Look for patterns in the ten times table, using concrete manipulatives to support. Notice the pattern in the digitsthe ones are always 0 and the tens increase by 1 ten each time.

-000-000-000-000-000$\begin{array}{lllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array} l$

Year: 3
Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or hundred square.

Look for patterns in the three times table, using concrete manipulatives to support. Notice the odd, even, odd, even pattern using number shapes to support. Highlight the pattern in the ones using

Skill: 6 times table															
0890900600					1	2	3	4		6	7	8	9		10
					11	(1)	13	14	15	16	17	(18)	19		20
					21	22	23	(2)	25	26	27	28	29		3
					31	32	33	34		(3)	37	38	39		40
						(1)	43	44	45	46	47	(18)	49		50
					51	52	53	(3)	55	56	57	58	59		®
6	12	18	24	30	61	62	63	64	65	66	67	68	69		70
36	42	48	54	60	7	72	73	74	75	76	7	8	79		80
					81	82	83	84	85	86	87	88	89		90
66	72	78	84	90	91	92	93	94	95	96	97	98	99		100

$$
-000000-000000-000000-
$$

 $\begin{array}{llllllllllll}0 & 6 & 12 & 18 & 24 & 30 & 36 & 42 & 48 & 54 & 60 & 66 \\ 72\end{array}$

Year: 3
Encourage daily counting in multiples, supported by a number line or a
hundred square. hundred square.
Look for patterns in Look for patterns in
the four times table, the four times table, using manipulatives to support. Make links
to the 2 times table, to the 2 times table, seeing how each multiple is double the twos. Notice the pattern in the ones five multiples Highlight that all the multiples are even using number shapes to support.

Skill: 9 times table													Year: 4
090000900000					1		34	5	6	7	8		Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the nine times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support as well as noting the odd, even pattern within the multiples.
					11	12	314	15	16	17	(18)	20	
						22	234	25	26	2	2829	30	
					31	32	334	35	(3)	37	3839	40	
					41	42	44	(4)	46	47	48	50	
9	18	27	36	45	51	52	3 (6)	55	56	57	58	60	
54	63	72	81	90	61	62	384	65	66	67	68	70	
-000000000-000000000-000000000-													

7	14	21	28	35
42	49	56	63	70

$-0000000-0000000-0000000-$

| Year: $\mathbf{4}$ |
| :--- | :--- |
| Encourage daily |
| counting in multiples |
| both forwards and |
| backwards, supported |
| by a number line or a |
| hundred square. |
| The seven times table |
| can be trickier to |
| learn due to the lack |
| of obvious pattern in |
| the numbers, however |
| they already know |
| several facts due to |
| commutativity. |
| Children can still see |
| the odd, even pattern |
| in the multiples using |
| number shapes to |
| support. |

Year: 4
Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the 12 times table, using manipulatives to support. Make links to the 6 times table, seeing how each multiple is double the sixes. Notice the pattern in the ones within each group of five multiples. The hundred square can support in highlighting this pattern.

Array - An ordered collection of counters, cubes or other item in rows and columns.

Commutative - Numbers can be multiplied in any order.

Dividend - In division, the number that is divided.

Divisor - In division, the number by which another is divided.

Exchange - Change a number or expression for another of an equal value.

Factor - A number that multiplies with another to make a product.

Multiplicand - In multiplication, a number to be multiplied by another.

Partitioning - Splitting a number into its component parts.

Product - The result of multiplying one number by another.

Quotient - The result of a division

Remainder - The amount left over after a division when the divisor is not a factor of the dividend.

Scaling - Enlarging or reducing a number by a given amount, called the scale factor

