Ths is St Martin's C of E Primary School Calculation Policy for multiplication and division which is supplemented with the Whiterose Calculation Policy. At St Martin's we believe that children should have a secure understanding of multiplication and division, being able to use a number of mental and visual strategies before moving onto formal methods.

Below are a number of images and representations that we use within our teaching to support children with their understanding of maths - taken from the Whiterose Calculation Policy.

Base 10/Dienes (multiplication)

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written representations match.

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of equipment and number of exchanges needed.

Base 10 also supports the area model of multiplication well. Children use the equipment to build the number in a rectangular shape which they then find the area of by calculating the total value of the pieces This area model can be linked to the grid method or the formal column method of multiplying 2-digits by 2-digits.

Place Value Counters (division)

ÕÕ

Benefits

Using place value counters is an effective way to support children's understanding of division.

When working with smaller numbers, children can use place value counters to share between groups. They start by sharing the larger place value column and work from left to right. If there are any counters left over once they have been shared, they exchange the counter e.g. exchange one ten for ten ones. This method can be linked to the part-whole model to support children to show their thinking.

Place value counters also support children's understanding of short division by grouping the counters rather than sharing them. Children work from left to right through the place value columns and group the counters in the number they are dividing by. If there are any counters left over after they have been grouped, they exchange the counter e.g. exchange one hundred for ten tens.

Base 10/Dienes (division)

Benefits Using Base 10 or Dienes is an effective way to support children's understanding of division When numbers become larger, it can be an effective way to move children from representing numbers as ones towards representing them as tens and ones in order to divide. Children can then share the Base 10/ Dienes between different groups e.g. by drawing circles or by

 $72 \div 3 = 24$ When they are sharing, children start with the larger place value and work from left to right. If there are any left in a column, they exchange e.g. one ten for ten ones. When recording, encourage children to use the partwhole model so they can consider how the number has been partitioned in order to divide. This will support them with mental methods.

rows on a place value grid.

Place Value Counters (multiplication)

44

8

80

Hundreds	Tens	Ones		
	000	0000		
	000	0000		34
	000	0000	×	5
	000	0000	1	70
	000	0000	1	2
0	20			

Benefits

Using place value counters is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written match.

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of equipment and number of exchanges needed The counters should be used to support the understanding of the written method rather than support the arithmetic

Place value counters also support the area model of multiplication well. Children can see how to multiply 2digit numbers by 2-digit numbers.

		Multiplication			Division							
Skill	Representatio	ns and models	Skill	Year	Representations and models							
Solve one-step problems with multiplication		Bar model Number shapes Counters	Ten frames Bead strings Number lines		Solve one-step problems with division (sharing)	1/2	Bar model Real life objects	Arrays Counters				
Multiply 2-digit by 1- digit numbers	3/4	Place value counters Base 10 Grid Method	Short written method Expanded written method Empty Numberlines		Solve one-step problems with division	1/2	Real life objects Number shapes Bead strings	Number lines Arrays				
Multiply 3-digit by 1- digit numbers	4	Place value counters Base 10	Short written method		(grouping)		Ten frames	Counters				
Multiply 4-digit by 1-	5	Grid Method Place value counters	Short written method		Divide 2-digits by 1- digit (no exchange sharing)	3	Straws Base 10 Bar model	Place value counte Part-whole mode				
Skill	Year Representations and models		ons and models		Divide 2-digits by 1- digit (sharing with exchange)	3	Straws Base 10 Bar model	Place value counte Part-whole mode				
Multiply 2-digit by 2-	5	Place value counters	Short written method		Skill	Year	Representatio	ns and models				
oign norroers		base to	Gilo metiloo		Divide 2-digits by 1- digit (sharing with remainders)	3/4	Straws Base 10 Bar model	Place value counte Part-whole mode				
Multiply 2-digit by 3- digit numbers	5	Place value counters	Short written method Grid method		Divide 2-digits by 1- digit (grouping)	4/5	Place value counters Counters	Place value grid Written short divisi				
	5/0	Formal written method			Divide 3-digits by 1- digit (sharing with exchange)	4	Base 10 Bar model	Place value counte Part-whole mode				
Multiply 2-digit by 4- digit numbers	5/6	ronnat whiten method			6/10/10/1809							

		Skill	Year	Representatio	ns and models
		Divide 4-digits by 1- digit (grouping)	5	Place value counters Counters	Place value grid Written short division
		Divide multi-digits by 2-digits (short division)	6	Written short division	List of multiples
		Divide multi-digits by 2-digits (long division)	6	Written long division	List of multiples
It is important to check the year group on either side of your year there is year 2/3 expectations. As a teacher you need to decide it	ar g f ye	group as some incl our children are rea	ude mix ady to c	xed expectations. For expectations.	example, in Year 3
Multiplication				Division	
Through Number Talk children should be consolidating and securing their ment	tal i	methods of calculatin	g allowir	ng them to manipulate nun	bers to solve calculations
in a variety of ways, and through this develop greater pace by choosing the most Children need to be clear that a compact written method is not always the best	t et me	fficient method. thod, and common err	ors nee	d to be highlighted when	teaching.
Number Talks should allow children to develop fluency, making links to their time Lower KS2 -	eta	ubles knowledge. For e	xample	in KS2 children should be	making links such as:
 To multiply by 5, they can x10 and half 					
• To multiply by 20, they can x10 and double or double and then x10					
 To multiply by 4, they can double and double again To multiply by 8, they can double, double, and double again 					
• To multiply by 8, they can double, double and double again					
 Higher KS2 To multiply by 6, they can x2 then x3 or x3 then x 2 Dividing by 5, divide by 10 and double Dividing by 20, divide by 10 and half 					
It is important to note that when picking example calculations to that you are teaching.	te	ach the children,	the nu	mbers that you choo	se match the method

Skill: Solve 1-step problems using multiplication

One bag holds 5 apples.

How many apples do 4 bags hold?

00000

They will count in 2s and 10s and later in 5s. Begin to find half of a number by sharing 8 Year: 1/2 Skill: Solve 1-step problems using multiplication (sharing) Year: 1/2 Children represent Children solve 20 multiplication as problems by sharing repeated addition in amounts into equal many different ways. ? ? ? ? ? groups. In Year 1, children use In Year 1. children use concrete and pictorial concrete and pictorial representations to solve problems. They There are 20 apples altogether. representations to are not expected to solve problems. They They are shared equally between 5 bags. record multiplication are not expected to How many apples are in each bag?

record division formally. $\bigcirc]$ In Year 2, children are introduced to the division symbol. $20 \div 5 = 4$

Commutativity

Y2

Children will know that 3×5 has the same answer as 5×3 . This can also be shown on the number line and on an array.

-999999-000000-000000-

5 + 5 + 5 + 5 = 20

 $4 \times 5 = 20$

 $5 \times 4 = 20$

formally.

In Year 2, children are introduced to the

multiplication symbol.

4 5 6 7 8 9 10 11 12 13 16 16 16 17 10

Using Number Facts

Children will recall known facts including doubles to 20 and table facts for 2s,5s and 10s and moving to 3s

<u>Gelosia method</u>

Children will be equipped with different strategies to solve multiplication problems

Using the Toolbox with increased multiples
$432 \div 5 = I \text{ know } 5 \text{ x } 80 = 400;$ 5 x 5 = 25; 5 x 2 = 10 5 x 1 = 5
5 x 80 5x5 5x1

There are 86 5s in 432 with a remainder of 2; the answer is 86 r 2 The remainder will initially be expressed as a number, then as a fraction and finally as a decimal (Year 6)

St Martin's Primary Progression in Multiplication and Division

Children will need to become fluent in multiplying and dividing numbers by 10,100,1000 and using what they know to derive unknown facts.

	Skill: Multipl	y 4-di	git nu	mbers	s by 2-	digit n	Year: 5/6		Skill:	Divide	multi (digits t	by 2-dig	gits (sł	nort div	vision)		Year: 6
6	Skill: Multipl	y 4-di TTh 2 2 1 5 7 76,6	Th 2 1 5 4 6	H 7 3 9 1 7 1	by 2- T 3 2 ,1 7 8 9	O 9 8 2 0 2	Year: 5/6 When multiplying 4- digits by 2-digits, children should be confident in the written method. If they are still struggling with times tables, provide multiplication grids to support when they are focusing on the use of the method. Consider where exchanged digits are placed and make sure this is consistent.	7,3	Skill: 12 35 ÷ 30	0 4 4 45	multi (3 6 3 7 4 3 7 60	2 75	by 2-dig	432 0 105	→ 12	vision) 2 = 3 ⁸ ¹³ ¹³⁵	9 ¹³ 5 150	Year: 6 When children begin to divide up to 4- digits by 2-digits, written methods become the most accurate as concrete and pictorial representations become less effective. Children can write out multiples to support their calculations with larger remainders. Children will also solve problems with remainders where the quotient can be rounded as
							i											appropriate.

St Martin's Primary Progression in Multiplication and Division

	87.5 ÷ 7	
	12.5	
	7) 87.5	
	$-\frac{70.0}{10x}$ /10x	
	17.5	
	- <u>14.0</u> 2X	
	3.5 0.5	
	° V	
	↓	
	Answer: 12.5	

	Times Tables												
Overview	Skill	Year	Representation	Skill	Year	Representations and models							
	Recall and use multiplication and division facts for the 3-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects	Recall and use multiplication and division facts for the 7-times table	4	Hundred square Number shapes	Bead strings Number lines					
	Recall and use multiplication and division facts for the 4-times table		Hundred square Number shapes Counters	Bead strings Number lines Everyday objects	Recall and use multiplication and division facts for the 9-times table	4	Hundred square Number shapes	Bead strings Number lines					
	Recall and use multiplication and division facts for the 8-times table	3	Hundred square Number shapes	Bead strings Number tracks Everyday objects	Recall and use multiplication and division facts for the 11-times table	4	Hundred square Base 10	Place value counters Number lines					
	Recall and use multiplication and division facts for the 6-times table	4	Hundred square Number shapes	Bead strings Number tracks Everyday objects	Recall and use multiplication and division facts for the 12-times table	4	Hundred square Base 10	Place value counters Number lines					

11 12 13 14 15 16 17 18 19 20 hundred square. 22 23 24 25 26 27 28 29 30 Look for patterns in 31 32 33 34 35 36 37 38 39 40 Look for patterns in the three times table. 41 42 43 44 45 46 47 48 49 50 13 14 15 16 the ten times table. 3 6 9 12 using concrete 28 29 30 using concrete 22 23 24 25 26 27 21 manipulatives to manipulatives to 31 32 33 34 35 36 37 38 39 4 support. Notice the 41 42 43 44 45 46 47 48 49 60 support. Notice the -999-999-999-900-000odd, even, odd, even pattern in the digits-52 53 54 55 56 57 58 59 60 pattern using number the ones are always O, 61 62 63 64 65 66 67 68 69 🧭 shapes to support. and the tens increase 72 73 74 75 76 77 78 79 🛞 ++++++++Highlight the pattern by 1 ten each time. 82 83 84 85 86 87 88 89 90 0 3 6 9 12 15 18 21 24 27 30 33 36 in the ones using a 91 92 93 94 95 96 97 98 99 0 hundred square.

seeing how each multiple is double the sixes. Notice the

pattern in the ones within each group of five multiples. The hundred square can support in

highlighting this pattern.

0 12 24 36 48 60 72 84 96 108 120 132 144

.

Array – An ordered collection of counters, cubes or other item in rows and columns.

Commutative – Numbers can be multiplied in any order.

Dividend – In division, the number that is divided.

Divisor – In division, the number by which another is divided.

Exchange – Change a number or expression for another of an equal value.

Factor – A number that multiplies with another to make a product.

Multiplicand – In multiplication, a number to be multiplied by another.

Partitioning – Splitting a number into its component parts.

Product – The result of multiplying one number by another.

Quotient - The result of a division

Remainder – The amount left over after a division when the divisor is not a factor of the dividend.

Scaling – Enlarging or reducing a number by a given amount, called the scale factor